9-simplex |
Rectified 9-simplex |
||||||||||
Truncated 9-simplex |
Cantellated 9-simplex |
||||||||||
Runcinated 9-simplex |
Stericated 9-simplex |
||||||||||
Pentellated 9-simplex |
Hexicated 9-simplex |
||||||||||
Heptellated 9-simplex |
Octellated 9-simplex |
||||||||||
9-orthoplex |
9-cube |
||||||||||
Truncated 9-orthoplex |
Truncated 9-cube |
||||||||||
Rectified 9-orthoplex |
Rectified 9-cube |
||||||||||
9-demicube |
Truncated 9-demicube |
In nine-dimensional geometry, a polyyotton (or 9-polytope) is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.
A uniform polyyotton is one which is vertex-transitive, and constructed from uniform facets.
A proposed name for 9-polytope is polyyotton (plural: polyyotta), created from poly-, yotta- (a variation on octa, meaning eight) and -on.
Contents |
Regular 9-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w}, with w {p,q,r,s,t,u,v} 8-polytope facets around each peak.
There are exactly three such convex regular 9-polytopes:
There are no nonconvex regular 9-polytopes.
The Euler characteristic for 9-polytopes that are topological 8-spheres (including all convex 9-polytopes) is zero. χ=V-E+F-C+f4-f5+f6-f7+f8=2.
Uniform 9-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:
Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|
A9 | [38] | |
B9 | [4,37] | |
D9 | [36,1,1] |
Selected regular and uniform 9-polytopes from each family include:
The A9 family has symmetry of order 3628800 (10 factorial).
There are 256+16-1=271 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Graph | Coxeter-Dynkin diagram Schläfli symbol Name |
Element counts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
1 |
t0{3,3,3,3,3,3,3,3} |
10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | |
2 |
t1{3,3,3,3,3,3,3,3} |
360 | 45 | ||||||||
3 |
t2{3,3,3,3,3,3,3,3} |
1260 | 120 | ||||||||
4 |
t3{3,3,3,3,3,3,3,3} |
2520 | 210 | ||||||||
5 |
t4{3,3,3,3,3,3,3,3} |
3150 | 252 | ||||||||
6 |
t0,1{3,3,3,3,3,3,3,3} |
405 | 90 | ||||||||
7 |
t0,2{3,3,3,3,3,3,3,3} |
2880 | 360 | ||||||||
8 |
t1,2{3,3,3,3,3,3,3,3} |
1620 | 360 | ||||||||
9 |
t0,3{3,3,3,3,3,3,3,3} |
8820 | 840 | ||||||||
10 |
t1,3{3,3,3,3,3,3,3,3} |
10080 | 1260 | ||||||||
11 |
t2,3{3,3,3,3,3,3,3,3} |
3780 | 840 | ||||||||
12 |
t0,4{3,3,3,3,3,3,3,3} |
15120 | 1260 | ||||||||
13 |
t1,4{3,3,3,3,3,3,3,3} |
26460 | 2520 | ||||||||
14 |
t2,4{3,3,3,3,3,3,3,3} |
20160 | 2520 | ||||||||
15 |
t3,4{3,3,3,3,3,3,3,3} |
5670 | 1260 | ||||||||
16 |
t0,5{3,3,3,3,3,3,3,3} |
15750 | 1260 | ||||||||
17 |
t1,5{3,3,3,3,3,3,3,3} |
37800 | 3150 | ||||||||
18 |
t2,5{3,3,3,3,3,3,3,3} |
44100 | 4200 | ||||||||
19 |
t3,5{3,3,3,3,3,3,3,3} |
25200 | 3150 | ||||||||
20 |
t0,6{3,3,3,3,3,3,3,3} |
10080 | 840 | ||||||||
21 |
t1,6{3,3,3,3,3,3,3,3} |
31500 | 2520 | ||||||||
22 |
t2,6{3,3,3,3,3,3,3,3} |
50400 | 4200 | ||||||||
23 |
t0,7{3,3,3,3,3,3,3,3} |
3780 | 360 | ||||||||
24 |
t1,7{3,3,3,3,3,3,3,3} |
15120 | 1260 | ||||||||
25 |
t0,8{3,3,3,3,3,3,3,3} |
720 | 90 | ||||||||
26 |
t0,1,2{3,3,3,3,3,3,3,3} |
3240 | 720 | ||||||||
27 |
t0,1,3{3,3,3,3,3,3,3,3} |
18900 | 2520 | ||||||||
28 |
t0,2,3{3,3,3,3,3,3,3,3} |
12600 | 2520 | ||||||||
29 |
t1,2,3{3,3,3,3,3,3,3,3} |
11340 | 2520 | ||||||||
30 |
t0,1,4{3,3,3,3,3,3,3,3} |
47880 | 5040 | ||||||||
31 |
t0,2,4{3,3,3,3,3,3,3,3} |
60480 | 7560 | ||||||||
32 |
t1,2,4{3,3,3,3,3,3,3,3} |
52920 | 7560 | ||||||||
33 |
t0,3,4{3,3,3,3,3,3,3,3} |
27720 | 5040 | ||||||||
34 |
t1,3,4{3,3,3,3,3,3,3,3} |
41580 | 7560 | ||||||||
35 |
t2,3,4{3,3,3,3,3,3,3,3} |
22680 | 5040 | ||||||||
36 |
t0,1,5{3,3,3,3,3,3,3,3} |
66150 | 6300 | ||||||||
37 |
t0,2,5{3,3,3,3,3,3,3,3} |
126000 | 12600 | ||||||||
38 |
t1,2,5{3,3,3,3,3,3,3,3} |
107100 | 12600 | ||||||||
39 |
t0,3,5{3,3,3,3,3,3,3,3} |
107100 | 12600 | ||||||||
40 |
t1,3,5{3,3,3,3,3,3,3,3} |
151200 | 18900 | ||||||||
41 |
t2,3,5{3,3,3,3,3,3,3,3} |
81900 | 12600 | ||||||||
42 |
t0,4,5{3,3,3,3,3,3,3,3} |
37800 | 6300 | ||||||||
43 |
t1,4,5{3,3,3,3,3,3,3,3} |
81900 | 12600 | ||||||||
44 |
t2,4,5{3,3,3,3,3,3,3,3} |
75600 | 12600 | ||||||||
45 |
t3,4,5{3,3,3,3,3,3,3,3} |
28350 | 6300 | ||||||||
46 |
t0,1,6{3,3,3,3,3,3,3,3} |
52920 | 5040 | ||||||||
47 |
t0,2,6{3,3,3,3,3,3,3,3} |
138600 | 12600 | ||||||||
48 |
t1,2,6{3,3,3,3,3,3,3,3} |
113400 | 12600 | ||||||||
49 |
t0,3,6{3,3,3,3,3,3,3,3} |
176400 | 16800 | ||||||||
50 |
t1,3,6{3,3,3,3,3,3,3,3} |
239400 | 25200 | ||||||||
51 |
t2,3,6{3,3,3,3,3,3,3,3} |
126000 | 16800 | ||||||||
52 |
t0,4,6{3,3,3,3,3,3,3,3} |
113400 | 12600 | ||||||||
53 |
t1,4,6{3,3,3,3,3,3,3,3} |
226800 | 25200 | ||||||||
54 |
t2,4,6{3,3,3,3,3,3,3,3} |
201600 | 25200 | ||||||||
55 |
t0,5,6{3,3,3,3,3,3,3,3} |
32760 | 5040 | ||||||||
56 |
t1,5,6{3,3,3,3,3,3,3,3} |
94500 | 12600 | ||||||||
57 |
t0,1,7{3,3,3,3,3,3,3,3} |
23940 | 2520 | ||||||||
58 |
t0,2,7{3,3,3,3,3,3,3,3} |
83160 | 7560 | ||||||||
59 |
t1,2,7{3,3,3,3,3,3,3,3} |
64260 | 7560 | ||||||||
60 |
t0,3,7{3,3,3,3,3,3,3,3} |
144900 | 12600 | ||||||||
61 |
t1,3,7{3,3,3,3,3,3,3,3} |
189000 | 18900 | ||||||||
62 |
t0,4,7{3,3,3,3,3,3,3,3} |
138600 | 12600 | ||||||||
63 |
t1,4,7{3,3,3,3,3,3,3,3} |
264600 | 25200 | ||||||||
64 |
t0,5,7{3,3,3,3,3,3,3,3} |
71820 | 7560 | ||||||||
65 |
t0,6,7{3,3,3,3,3,3,3,3} |
17640 | 2520 | ||||||||
66 |
t0,1,8{3,3,3,3,3,3,3,3} |
5400 | 720 | ||||||||
67 |
t0,2,8{3,3,3,3,3,3,3,3} |
25200 | 2520 | ||||||||
68 |
t0,3,8{3,3,3,3,3,3,3,3} |
57960 | 5040 | ||||||||
69 |
t0,4,8{3,3,3,3,3,3,3,3} |
75600 | 6300 | ||||||||
70 |
t0,1,2,3{3,3,3,3,3,3,3,3} |
22680 | 5040 | ||||||||
71 |
t0,1,2,4{3,3,3,3,3,3,3,3} |
105840 | 15120 | ||||||||
72 |
t0,1,3,4{3,3,3,3,3,3,3,3} |
75600 | 15120 | ||||||||
73 |
t0,2,3,4{3,3,3,3,3,3,3,3} |
75600 | 15120 | ||||||||
74 |
t1,2,3,4{3,3,3,3,3,3,3,3} |
68040 | 15120 | ||||||||
75 |
t0,1,2,5{3,3,3,3,3,3,3,3} |
214200 | 25200 | ||||||||
76 |
t0,1,3,5{3,3,3,3,3,3,3,3} |
283500 | 37800 | ||||||||
77 |
t0,2,3,5{3,3,3,3,3,3,3,3} |
264600 | 37800 | ||||||||
78 |
t1,2,3,5{3,3,3,3,3,3,3,3} |
245700 | 37800 | ||||||||
79 |
t0,1,4,5{3,3,3,3,3,3,3,3} |
138600 | 25200 | ||||||||
80 |
t0,2,4,5{3,3,3,3,3,3,3,3} |
226800 | 37800 | ||||||||
81 |
t1,2,4,5{3,3,3,3,3,3,3,3} |
189000 | 37800 | ||||||||
82 |
t0,3,4,5{3,3,3,3,3,3,3,3} |
138600 | 25200 | ||||||||
83 |
t1,3,4,5{3,3,3,3,3,3,3,3} |
207900 | 37800 | ||||||||
84 |
t2,3,4,5{3,3,3,3,3,3,3,3} |
113400 | 25200 | ||||||||
85 |
t0,1,2,6{3,3,3,3,3,3,3,3} |
226800 | 25200 | ||||||||
86 |
t0,1,3,6{3,3,3,3,3,3,3,3} |
453600 | 50400 | ||||||||
87 |
t0,2,3,6{3,3,3,3,3,3,3,3} |
403200 | 50400 | ||||||||
88 |
t1,2,3,6{3,3,3,3,3,3,3,3} |
378000 | 50400 | ||||||||
89 |
t0,1,4,6{3,3,3,3,3,3,3,3} |
403200 | 50400 | ||||||||
90 |
t0,2,4,6{3,3,3,3,3,3,3,3} |
604800 | 75600 | ||||||||
91 |
t1,2,4,6{3,3,3,3,3,3,3,3} |
529200 | 75600 | ||||||||
92 |
t0,3,4,6{3,3,3,3,3,3,3,3} |
352800 | 50400 | ||||||||
93 |
t1,3,4,6{3,3,3,3,3,3,3,3} |
529200 | 75600 | ||||||||
94 |
t2,3,4,6{3,3,3,3,3,3,3,3} |
302400 | 50400 | ||||||||
95 |
t0,1,5,6{3,3,3,3,3,3,3,3} |
151200 | 25200 | ||||||||
96 |
t0,2,5,6{3,3,3,3,3,3,3,3} |
352800 | 50400 | ||||||||
97 |
t1,2,5,6{3,3,3,3,3,3,3,3} |
277200 | 50400 | ||||||||
98 |
t0,3,5,6{3,3,3,3,3,3,3,3} |
352800 | 50400 | ||||||||
99 |
t1,3,5,6{3,3,3,3,3,3,3,3} |
491400 | 75600 | ||||||||
100 |
t2,3,5,6{3,3,3,3,3,3,3,3} |
252000 | 50400 | ||||||||
101 |
t0,4,5,6{3,3,3,3,3,3,3,3} |
151200 | 25200 | ||||||||
102 |
t1,4,5,6{3,3,3,3,3,3,3,3} |
327600 | 50400 | ||||||||
103 |
t0,1,2,7{3,3,3,3,3,3,3,3} |
128520 | 15120 | ||||||||
104 |
t0,1,3,7{3,3,3,3,3,3,3,3} |
359100 | 37800 | ||||||||
105 |
t0,2,3,7{3,3,3,3,3,3,3,3} |
302400 | 37800 | ||||||||
106 |
t1,2,3,7{3,3,3,3,3,3,3,3} |
283500 | 37800 | ||||||||
107 |
t0,1,4,7{3,3,3,3,3,3,3,3} |
478800 | 50400 | ||||||||
108 |
t0,2,4,7{3,3,3,3,3,3,3,3} |
680400 | 75600 | ||||||||
109 |
t1,2,4,7{3,3,3,3,3,3,3,3} |
604800 | 75600 | ||||||||
110 |
t0,3,4,7{3,3,3,3,3,3,3,3} |
378000 | 50400 | ||||||||
111 |
t1,3,4,7{3,3,3,3,3,3,3,3} |
567000 | 75600 | ||||||||
112 |
t0,1,5,7{3,3,3,3,3,3,3,3} |
321300 | 37800 | ||||||||
113 |
t0,2,5,7{3,3,3,3,3,3,3,3} |
680400 | 75600 | ||||||||
114 |
t1,2,5,7{3,3,3,3,3,3,3,3} |
567000 | 75600 | ||||||||
115 |
t0,3,5,7{3,3,3,3,3,3,3,3} |
642600 | 75600 | ||||||||
116 |
t1,3,5,7{3,3,3,3,3,3,3,3} |
907200 | 113400 | ||||||||
117 |
t0,4,5,7{3,3,3,3,3,3,3,3} |
264600 | 37800 | ||||||||
118 |
t0,1,6,7{3,3,3,3,3,3,3,3} |
98280 | 15120 | ||||||||
119 |
t0,2,6,7{3,3,3,3,3,3,3,3} |
302400 | 37800 | ||||||||
120 |
t1,2,6,7{3,3,3,3,3,3,3,3} |
226800 | 37800 | ||||||||
121 |
t0,3,6,7{3,3,3,3,3,3,3,3} |
428400 | 50400 | ||||||||
122 |
t0,4,6,7{3,3,3,3,3,3,3,3} |
302400 | 37800 | ||||||||
123 |
t0,5,6,7{3,3,3,3,3,3,3,3} |
98280 | 15120 | ||||||||
124 |
t0,1,2,8{3,3,3,3,3,3,3,3} |
35280 | 5040 | ||||||||
125 |
t0,1,3,8{3,3,3,3,3,3,3,3} |
136080 | 15120 | ||||||||
126 |
t0,2,3,8{3,3,3,3,3,3,3,3} |
105840 | 15120 | ||||||||
127 |
t0,1,4,8{3,3,3,3,3,3,3,3} |
252000 | 25200 | ||||||||
128 |
t0,2,4,8{3,3,3,3,3,3,3,3} |
340200 | 37800 | ||||||||
129 |
t0,3,4,8{3,3,3,3,3,3,3,3} |
176400 | 25200 | ||||||||
130 |
t0,1,5,8{3,3,3,3,3,3,3,3} |
252000 | 25200 | ||||||||
131 |
t0,2,5,8{3,3,3,3,3,3,3,3} |
504000 | 50400 | ||||||||
132 |
t0,3,5,8{3,3,3,3,3,3,3,3} |
453600 | 50400 | ||||||||
133 |
t0,1,6,8{3,3,3,3,3,3,3,3} |
136080 | 15120 | ||||||||
134 |
t0,2,6,8{3,3,3,3,3,3,3,3} |
378000 | 37800 | ||||||||
135 |
t0,1,7,8{3,3,3,3,3,3,3,3} |
35280 | 5040 | ||||||||
136 |
t0,1,2,3,4{3,3,3,3,3,3,3,3} |
136080 | 30240 | ||||||||
137 |
t0,1,2,3,5{3,3,3,3,3,3,3,3} |
491400 | 75600 | ||||||||
138 |
t0,1,2,4,5{3,3,3,3,3,3,3,3} |
378000 | 75600 | ||||||||
139 |
t0,1,3,4,5{3,3,3,3,3,3,3,3} |
378000 | 75600 | ||||||||
140 |
t0,2,3,4,5{3,3,3,3,3,3,3,3} |
378000 | 75600 | ||||||||
141 |
t1,2,3,4,5{3,3,3,3,3,3,3,3} |
340200 | 75600 | ||||||||
142 |
t0,1,2,3,6{3,3,3,3,3,3,3,3} |
756000 | 100800 | ||||||||
143 |
t0,1,2,4,6{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
144 |
t0,1,3,4,6{3,3,3,3,3,3,3,3} |
982800 | 151200 | ||||||||
145 |
t0,2,3,4,6{3,3,3,3,3,3,3,3} |
982800 | 151200 | ||||||||
146 |
t1,2,3,4,6{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
147 |
t0,1,2,5,6{3,3,3,3,3,3,3,3} |
554400 | 100800 | ||||||||
148 |
t0,1,3,5,6{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
149 |
t0,2,3,5,6{3,3,3,3,3,3,3,3} |
831600 | 151200 | ||||||||
150 |
t1,2,3,5,6{3,3,3,3,3,3,3,3} |
756000 | 151200 | ||||||||
151 |
t0,1,4,5,6{3,3,3,3,3,3,3,3} |
554400 | 100800 | ||||||||
152 |
t0,2,4,5,6{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
153 |
t1,2,4,5,6{3,3,3,3,3,3,3,3} |
756000 | 151200 | ||||||||
154 |
t0,3,4,5,6{3,3,3,3,3,3,3,3} |
554400 | 100800 | ||||||||
155 |
t1,3,4,5,6{3,3,3,3,3,3,3,3} |
831600 | 151200 | ||||||||
156 |
t2,3,4,5,6{3,3,3,3,3,3,3,3} |
453600 | 100800 | ||||||||
157 |
t0,1,2,3,7{3,3,3,3,3,3,3,3} |
567000 | 75600 | ||||||||
158 |
t0,1,2,4,7{3,3,3,3,3,3,3,3} |
1209600 | 151200 | ||||||||
159 |
t0,1,3,4,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
160 |
t0,2,3,4,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
161 |
t1,2,3,4,7{3,3,3,3,3,3,3,3} |
982800 | 151200 | ||||||||
162 |
t0,1,2,5,7{3,3,3,3,3,3,3,3} |
1134000 | 151200 | ||||||||
163 |
t0,1,3,5,7{3,3,3,3,3,3,3,3} |
1701000 | 226800 | ||||||||
164 |
t0,2,3,5,7{3,3,3,3,3,3,3,3} |
1587600 | 226800 | ||||||||
165 |
t1,2,3,5,7{3,3,3,3,3,3,3,3} |
1474200 | 226800 | ||||||||
166 |
t0,1,4,5,7{3,3,3,3,3,3,3,3} |
982800 | 151200 | ||||||||
167 |
t0,2,4,5,7{3,3,3,3,3,3,3,3} |
1587600 | 226800 | ||||||||
168 |
t1,2,4,5,7{3,3,3,3,3,3,3,3} |
1360800 | 226800 | ||||||||
169 |
t0,3,4,5,7{3,3,3,3,3,3,3,3} |
982800 | 151200 | ||||||||
170 |
t1,3,4,5,7{3,3,3,3,3,3,3,3} |
1474200 | 226800 | ||||||||
171 |
t0,1,2,6,7{3,3,3,3,3,3,3,3} |
453600 | 75600 | ||||||||
172 |
t0,1,3,6,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
173 |
t0,2,3,6,7{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
174 |
t1,2,3,6,7{3,3,3,3,3,3,3,3} |
831600 | 151200 | ||||||||
175 |
t0,1,4,6,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
176 |
t0,2,4,6,7{3,3,3,3,3,3,3,3} |
1587600 | 226800 | ||||||||
177 |
t1,2,4,6,7{3,3,3,3,3,3,3,3} |
1360800 | 226800 | ||||||||
178 |
t0,3,4,6,7{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
179 |
t0,1,5,6,7{3,3,3,3,3,3,3,3} |
453600 | 75600 | ||||||||
180 |
t0,2,5,6,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
181 |
t0,3,5,6,7{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
182 |
t0,4,5,6,7{3,3,3,3,3,3,3,3} |
453600 | 75600 | ||||||||
183 |
t0,1,2,3,8{3,3,3,3,3,3,3,3} |
196560 | 30240 | ||||||||
184 |
t0,1,2,4,8{3,3,3,3,3,3,3,3} |
604800 | 75600 | ||||||||
185 |
t0,1,3,4,8{3,3,3,3,3,3,3,3} |
491400 | 75600 | ||||||||
186 |
t0,2,3,4,8{3,3,3,3,3,3,3,3} |
491400 | 75600 | ||||||||
187 |
t0,1,2,5,8{3,3,3,3,3,3,3,3} |
856800 | 100800 | ||||||||
188 |
t0,1,3,5,8{3,3,3,3,3,3,3,3} |
1209600 | 151200 | ||||||||
189 |
t0,2,3,5,8{3,3,3,3,3,3,3,3} |
1134000 | 151200 | ||||||||
190 |
t0,1,4,5,8{3,3,3,3,3,3,3,3} |
655200 | 100800 | ||||||||
191 |
t0,2,4,5,8{3,3,3,3,3,3,3,3} |
1058400 | 151200 | ||||||||
192 |
t0,3,4,5,8{3,3,3,3,3,3,3,3} |
655200 | 100800 | ||||||||
193 |
t0,1,2,6,8{3,3,3,3,3,3,3,3} |
604800 | 75600 | ||||||||
194 |
t0,1,3,6,8{3,3,3,3,3,3,3,3} |
1285200 | 151200 | ||||||||
195 |
t0,2,3,6,8{3,3,3,3,3,3,3,3} |
1134000 | 151200 | ||||||||
196 |
t0,1,4,6,8{3,3,3,3,3,3,3,3} |
1209600 | 151200 | ||||||||
197 |
t0,2,4,6,8{3,3,3,3,3,3,3,3} |
1814400 | 226800 | ||||||||
198 |
t0,1,5,6,8{3,3,3,3,3,3,3,3} |
491400 | 75600 | ||||||||
199 |
t0,1,2,7,8{3,3,3,3,3,3,3,3} |
196560 | 30240 | ||||||||
200 |
t0,1,3,7,8{3,3,3,3,3,3,3,3} |
604800 | 75600 | ||||||||
201 |
t0,1,4,7,8{3,3,3,3,3,3,3,3} |
856800 | 100800 | ||||||||
202 |
t0,1,2,3,4,5{3,3,3,3,3,3,3,3} |
680400 | 151200 | ||||||||
203 |
t0,1,2,3,4,6{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
204 |
t0,1,2,3,5,6{3,3,3,3,3,3,3,3} |
1512000 | 302400 | ||||||||
205 |
t0,1,2,4,5,6{3,3,3,3,3,3,3,3} |
1512000 | 302400 | ||||||||
206 |
t0,1,3,4,5,6{3,3,3,3,3,3,3,3} |
1512000 | 302400 | ||||||||
207 |
t0,2,3,4,5,6{3,3,3,3,3,3,3,3} |
1512000 | 302400 | ||||||||
208 |
t1,2,3,4,5,6{3,3,3,3,3,3,3,3} |
1360800 | 302400 | ||||||||
209 |
t0,1,2,3,4,7{3,3,3,3,3,3,3,3} |
1965600 | 302400 | ||||||||
210 |
t0,1,2,3,5,7{3,3,3,3,3,3,3,3} |
2948400 | 453600 | ||||||||
211 |
t0,1,2,4,5,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
212 |
t0,1,3,4,5,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
213 |
t0,2,3,4,5,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
214 |
t1,2,3,4,5,7{3,3,3,3,3,3,3,3} |
2494800 | 453600 | ||||||||
215 |
t0,1,2,3,6,7{3,3,3,3,3,3,3,3} |
1663200 | 302400 | ||||||||
216 |
t0,1,2,4,6,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
217 |
t0,1,3,4,6,7{3,3,3,3,3,3,3,3} |
2494800 | 453600 | ||||||||
218 |
t0,2,3,4,6,7{3,3,3,3,3,3,3,3} |
2494800 | 453600 | ||||||||
219 |
t1,2,3,4,6,7{3,3,3,3,3,3,3,3} |
2268000 | 453600 | ||||||||
220 |
t0,1,2,5,6,7{3,3,3,3,3,3,3,3} |
1663200 | 302400 | ||||||||
221 |
t0,1,3,5,6,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
222 |
t0,2,3,5,6,7{3,3,3,3,3,3,3,3} |
2494800 | 453600 | ||||||||
223 |
t1,2,3,5,6,7{3,3,3,3,3,3,3,3} |
2268000 | 453600 | ||||||||
224 |
t0,1,4,5,6,7{3,3,3,3,3,3,3,3} |
1663200 | 302400 | ||||||||
225 |
t0,2,4,5,6,7{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
226 |
t0,3,4,5,6,7{3,3,3,3,3,3,3,3} |
1663200 | 302400 | ||||||||
227 |
t0,1,2,3,4,8{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
228 |
t0,1,2,3,5,8{3,3,3,3,3,3,3,3} |
2116800 | 302400 | ||||||||
229 |
t0,1,2,4,5,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
230 |
t0,1,3,4,5,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
231 |
t0,2,3,4,5,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
232 |
t0,1,2,3,6,8{3,3,3,3,3,3,3,3} |
2116800 | 302400 | ||||||||
233 |
t0,1,2,4,6,8{3,3,3,3,3,3,3,3} |
3175200 | 453600 | ||||||||
234 |
t0,1,3,4,6,8{3,3,3,3,3,3,3,3} |
2948400 | 453600 | ||||||||
235 |
t0,2,3,4,6,8{3,3,3,3,3,3,3,3} |
2948400 | 453600 | ||||||||
236 |
t0,1,2,5,6,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
237 |
t0,1,3,5,6,8{3,3,3,3,3,3,3,3} |
2948400 | 453600 | ||||||||
238 |
t0,2,3,5,6,8{3,3,3,3,3,3,3,3} |
2721600 | 453600 | ||||||||
239 |
t0,1,4,5,6,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
240 |
t0,1,2,3,7,8{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
241 |
t0,1,2,4,7,8{3,3,3,3,3,3,3,3} |
2116800 | 302400 | ||||||||
242 |
t0,1,3,4,7,8{3,3,3,3,3,3,3,3} |
1814400 | 302400 | ||||||||
243 |
t0,1,2,5,7,8{3,3,3,3,3,3,3,3} |
2116800 | 302400 | ||||||||
244 |
t0,1,3,5,7,8{3,3,3,3,3,3,3,3} |
3175200 | 453600 | ||||||||
245 |
t0,1,2,6,7,8{3,3,3,3,3,3,3,3} |
907200 | 151200 | ||||||||
246 |
t0,1,2,3,4,5,6{3,3,3,3,3,3,3,3} |
2721600 | 604800 | ||||||||
247 |
t0,1,2,3,4,5,7{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
248 |
t0,1,2,3,4,6,7{3,3,3,3,3,3,3,3} |
4536000 | 907200 | ||||||||
249 |
t0,1,2,3,5,6,7{3,3,3,3,3,3,3,3} |
4536000 | 907200 | ||||||||
250 |
t0,1,2,4,5,6,7{3,3,3,3,3,3,3,3} |
4536000 | 907200 | ||||||||
251 |
t0,1,3,4,5,6,7{3,3,3,3,3,3,3,3} |
4536000 | 907200 | ||||||||
252 |
t0,2,3,4,5,6,7{3,3,3,3,3,3,3,3} |
4536000 | 907200 | ||||||||
253 |
t1,2,3,4,5,6,7{3,3,3,3,3,3,3,3} |
4082400 | 907200 | ||||||||
254 |
t0,1,2,3,4,5,8{3,3,3,3,3,3,3,3} |
3326400 | 604800 | ||||||||
255 |
t0,1,2,3,4,6,8{3,3,3,3,3,3,3,3} |
5443200 | 907200 | ||||||||
256 |
t0,1,2,3,5,6,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
257 |
t0,1,2,4,5,6,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
258 |
t0,1,3,4,5,6,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
259 |
t0,2,3,4,5,6,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
260 |
t0,1,2,3,4,7,8{3,3,3,3,3,3,3,3} |
3326400 | 604800 | ||||||||
261 |
t0,1,2,3,5,7,8{3,3,3,3,3,3,3,3} |
5443200 | 907200 | ||||||||
262 |
t0,1,2,4,5,7,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
263 |
t0,1,3,4,5,7,8{3,3,3,3,3,3,3,3} |
4989600 | 907200 | ||||||||
264 |
t0,1,2,3,6,7,8{3,3,3,3,3,3,3,3} |
3326400 | 604800 | ||||||||
265 |
t0,1,2,4,6,7,8{3,3,3,3,3,3,3,3} |
5443200 | 907200 | ||||||||
266 |
t0,1,2,3,4,5,6,7{3,3,3,3,3,3,3,3} |
8164800 | 1814400 | ||||||||
267 |
t0,1,2,3,4,5,6,8{3,3,3,3,3,3,3,3} |
9072000 | 1814400 | ||||||||
268 |
t0,1,2,3,4,5,7,8{3,3,3,3,3,3,3,3} |
9072000 | 1814400 | ||||||||
269 |
t0,1,2,3,4,6,7,8{3,3,3,3,3,3,3,3} |
9072000 | 1814400 | ||||||||
270 |
t0,1,2,3,5,6,7,8{3,3,3,3,3,3,3,3} |
9072000 | 1814400 | ||||||||
271 |
t0,1,2,3,4,5,6,7,8{3,3,3,3,3,3,3,3} |
16329600 | 3628800 |
There are 511 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
Eleven cases are shown below: Nine rectified forms and 2 truncations. Bowers-style acronym names are given in parentheses for cross-referencing. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Graph | Coxeter-Dynkin diagram Schläfli symbol Name |
Element counts | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | ||||
1 | t0{4,3,3,3,3,3,3,3} 9-cube (enne) |
18 | 144 | 672 | 2016 | 4032 | 5376 | 4608 | 2304 | 512 | ||
2 | t0,1{4,3,3,3,3,3,3,3} Truncated 9-cube (ten) |
2304 | 4608 | |||||||||
3 | t1{4,3,3,3,3,3,3,3} Rectified 9-cube (ren) |
18432 | 2304 | |||||||||
4 | t2{4,3,3,3,3,3,3,3} Birectified 9-cube (barn) |
64512 | 4608 | |||||||||
5 | t3{4,3,3,3,3,3,3,3} Trirectified 9-cube (tarn) |
96768 | 5376 | |||||||||
6 | t4{4,3,3,3,3,3,3,3} Quadrirectified 9-cube (nav) (Quadrirectified 9-orthoplex) |
80640 | 4032 | |||||||||
7 | t3{3,3,3,3,3,3,3,4} Trirectified 9-orthoplex (tarv) |
40320 | 2016 | |||||||||
8 | t2{3,3,3,3,3,3,3,4} Birectified 9-orthoplex (brav) |
12096 | 672 | |||||||||
9 | t1{3,3,3,3,3,3,3,4} Rectified 9-orthoplex (riv) |
2016 | 144 | |||||||||
10 | t0,1{3,3,3,3,3,3,3,4} Truncated 9-orthoplex (tiv) |
2160 | 288 | |||||||||
11 | t0{3,3,3,3,3,3,3,4} 9-orthoplex (vee) |
512 | 2304 | 4608 | 5376 | 4032 | 2016 | 672 | 144 | 18 |
The D9 family has symmetry of order 92,897,280 (9 factorial × 28).
This family has 3×128−1=383 Wythoffian uniform polytopes, generated by marking one or more nodes of the D9 Coxeter-Dynkin diagram. Of these, 255 (2×128−1) are repeated from the B9 family and 128 are unique to this family, with the eight 1 or 2 ringed forms listed below. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Coxeter plane graphs | Coxeter-Dynkin diagram Schläfli symbol |
Base point (Alternately signed) |
Element counts | Circumrad | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B9 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | A7 | A5 | A3 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ||||
1 | 9-demicube (henne) |
(1,1,1,1,1,1,1,1,1) | 274 | 2448 | 9888 | 23520 | 36288 | 37632 | 21404 | 4608 | 256 | 1.0606601 | |||||||||||
2 | Truncated 9-demicube (thenne) |
(1,1,3,3,3,3,3,3,3) | 69120 | 9216 | 2.8504384 | ||||||||||||||||||
3 | Cantellated 9-demicube |
(1,1,1,3,3,3,3,3,3) | 225792 | 21504 | 2.6692696 | ||||||||||||||||||
4 | Runcinated 9-demicube |
(1,1,1,1,3,3,3,3,3) | 419328 | 32256 | 2.4748735 | ||||||||||||||||||
5 | Stericated 9-demicube |
(1,1,1,1,1,3,3,3,3) | 483840 | 32256 | 2.2638462 | ||||||||||||||||||
6 | Pentellated 9-demicube |
(1,1,1,1,1,1,3,3,3) | 354816 | 21504 | 2.0310094 | ||||||||||||||||||
7 | Hexicated 9-demicube |
(1,1,1,1,1,1,1,3,3) | 161280 | 9216 | 1.7677668 | ||||||||||||||||||
8 | Heptellated 9-demicube |
(1,1,1,1,1,1,1,1,3) | 41472 | 2304 | 1.4577379 |
There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 8-space:
# | Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|---|
1 | [3[8]] | ||
2 | h[4,36,4] [4,35,31,1] |
||
3 | [4,36,4] | ||
4 | q[4,36,4] [31,1,34,31,1] |
||
5 | [35,2,1] |
Regular and uniform tessellations include:
There are no compact hyperbolic Coxeter groups of rank 9, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However there are 4 noncompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 8-space as permutations of rings of the Coxeter diagrams.
= [3,3[8]]: |
= [31,1,33,32,1]: |
= [4,34,32,1]: |
= [34,3,1]: |
Family | An | BCn | Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regular polygon | Triangle | Square | Hexagon | Pentagon | ||||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
n-polytopes | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes |