Uniform 9-polytope

Graphs of three regular and related uniform polytopes

9-simplex

Rectified 9-simplex

Truncated 9-simplex

Cantellated 9-simplex

Runcinated 9-simplex

Stericated 9-simplex

Pentellated 9-simplex

Hexicated 9-simplex

Heptellated 9-simplex

Octellated 9-simplex

9-orthoplex

9-cube

Truncated 9-orthoplex

Truncated 9-cube

Rectified 9-orthoplex

Rectified 9-cube

9-demicube

Truncated 9-demicube

In nine-dimensional geometry, a polyyotton (or 9-polytope) is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

A uniform polyyotton is one which is vertex-transitive, and constructed from uniform facets.

A proposed name for 9-polytope is polyyotton (plural: polyyotta), created from poly-, yotta- (a variation on octa, meaning eight) and -on.

Contents

Regular 9-polytopes

Regular 9-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w}, with w {p,q,r,s,t,u,v} 8-polytope facets around each peak.

There are exactly three such convex regular 9-polytopes:

  1. {3,3,3,3,3,3,3,3} - 9-simplex
  2. {4,3,3,3,3,3,3,3} - 9-cube
  3. {3,3,3,3,3,3,3,4} - 9-orthoplex

There are no nonconvex regular 9-polytopes.

Euler characteristic

The Euler characteristic for 9-polytopes that are topological 8-spheres (including all convex 9-polytopes) is zero. χ=V-E+F-C+f4-f5+f6-f7+f8=2.

Uniform 9-polytopes by fundamental Coxeter groups

Uniform 9-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

Coxeter group Coxeter-Dynkin diagram
A9 [38]
B9 [4,37]
D9 [36,1,1]

Selected regular and uniform 9-polytopes from each family include:

The A9 family

The A9 family has symmetry of order 3628800 (10 factorial).

There are 256+16-1=271 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.

# Graph Coxeter-Dynkin diagram
Schläfli symbol
Name
Element counts
8-faces 7-faces 6-faces 5-faces 4-faces Cells Faces Edges Vertices
1

t0{3,3,3,3,3,3,3,3}
9-simplex (day)

10 45 120 210 252 210 120 45 10
2

t1{3,3,3,3,3,3,3,3}
Rectified 9-simplex (reday)

360 45
3

t2{3,3,3,3,3,3,3,3}
Birectified 9-simplex (breday)

1260 120
4

t3{3,3,3,3,3,3,3,3}
Trirectified 9-simplex (treday)

2520 210
5

t4{3,3,3,3,3,3,3,3}
Quadrirectified 9-simplex (icoy)

3150 252
6

t0,1{3,3,3,3,3,3,3,3}
Truncated 9-simplex (teday)

405 90
7

t0,2{3,3,3,3,3,3,3,3}
Cantellated 9-simplex

2880 360
8

t1,2{3,3,3,3,3,3,3,3}
Bitruncated 9-simplex

1620 360
9

t0,3{3,3,3,3,3,3,3,3}
Runcinated 9-simplex

8820 840
10

t1,3{3,3,3,3,3,3,3,3}
Bicantellated 9-simplex

10080 1260
11

t2,3{3,3,3,3,3,3,3,3}
Tritruncated 9-simplex (treday)

3780 840
12

t0,4{3,3,3,3,3,3,3,3}
Stericated 9-simplex

15120 1260
13

t1,4{3,3,3,3,3,3,3,3}
Biruncinated 9-simplex

26460 2520
14

t2,4{3,3,3,3,3,3,3,3}
Tricantellated 9-simplex

20160 2520
15

t3,4{3,3,3,3,3,3,3,3}
Quadritruncated 9-simplex

5670 1260
16

t0,5{3,3,3,3,3,3,3,3}
Pentellated 9-simplex

15750 1260
17

t1,5{3,3,3,3,3,3,3,3}
Bistericated 9-simplex

37800 3150
18

t2,5{3,3,3,3,3,3,3,3}
Triruncinated 9-simplex

44100 4200
19

t3,5{3,3,3,3,3,3,3,3}
Quadricantellated 9-simplex

25200 3150
20

t0,6{3,3,3,3,3,3,3,3}
Hexicated 9-simplex

10080 840
21

t1,6{3,3,3,3,3,3,3,3}
Bipentellated 9-simplex

31500 2520
22

t2,6{3,3,3,3,3,3,3,3}
Tristericated 9-simplex

50400 4200
23

t0,7{3,3,3,3,3,3,3,3}
Heptellated 9-simplex

3780 360
24

t1,7{3,3,3,3,3,3,3,3}
Bihexicated 9-simplex

15120 1260
25

t0,8{3,3,3,3,3,3,3,3}
Octellated 9-simplex

720 90
26

t0,1,2{3,3,3,3,3,3,3,3}
Cantitruncated 9-simplex

3240 720
27

t0,1,3{3,3,3,3,3,3,3,3}
Runcitruncated 9-simplex

18900 2520
28

t0,2,3{3,3,3,3,3,3,3,3}
Runcicantellated 9-simplex

12600 2520
29

t1,2,3{3,3,3,3,3,3,3,3}
Bicantitruncated 9-simplex

11340 2520
30

t0,1,4{3,3,3,3,3,3,3,3}
Steritruncated 9-simplex

47880 5040
31

t0,2,4{3,3,3,3,3,3,3,3}
Stericantellated 9-simplex

60480 7560
32

t1,2,4{3,3,3,3,3,3,3,3}
Biruncitruncated 9-simplex

52920 7560
33

t0,3,4{3,3,3,3,3,3,3,3}
Steriruncinated 9-simplex

27720 5040
34

t1,3,4{3,3,3,3,3,3,3,3}
Biruncicantellated 9-simplex

41580 7560
35

t2,3,4{3,3,3,3,3,3,3,3}
Tricantitruncated 9-simplex

22680 5040
36

t0,1,5{3,3,3,3,3,3,3,3}
Pentitruncated 9-simplex

66150 6300
37

t0,2,5{3,3,3,3,3,3,3,3}
Penticantellated 9-simplex

126000 12600
38

t1,2,5{3,3,3,3,3,3,3,3}
Bisteritruncated 9-simplex

107100 12600
39

t0,3,5{3,3,3,3,3,3,3,3}
Pentiruncinated 9-simplex

107100 12600
40

t1,3,5{3,3,3,3,3,3,3,3}
Bistericantellated 9-simplex

151200 18900
41

t2,3,5{3,3,3,3,3,3,3,3}
Triruncitruncated 9-simplex

81900 12600
42

t0,4,5{3,3,3,3,3,3,3,3}
Pentistericated 9-simplex

37800 6300
43

t1,4,5{3,3,3,3,3,3,3,3}
Bisteriruncinated 9-simplex

81900 12600
44

t2,4,5{3,3,3,3,3,3,3,3}
Triruncicantellated 9-simplex

75600 12600
45

t3,4,5{3,3,3,3,3,3,3,3}
Quadricantitruncated 9-simplex

28350 6300
46

t0,1,6{3,3,3,3,3,3,3,3}
Hexitruncated 9-simplex

52920 5040
47

t0,2,6{3,3,3,3,3,3,3,3}
Hexicantellated 9-simplex

138600 12600
48

t1,2,6{3,3,3,3,3,3,3,3}
Bipentitruncated 9-simplex

113400 12600
49

t0,3,6{3,3,3,3,3,3,3,3}
Hexiruncinated 9-simplex

176400 16800
50

t1,3,6{3,3,3,3,3,3,3,3}
Bipenticantellated 9-simplex

239400 25200
51

t2,3,6{3,3,3,3,3,3,3,3}
Tristeritruncated 9-simplex

126000 16800
52

t0,4,6{3,3,3,3,3,3,3,3}
Hexistericated 9-simplex

113400 12600
53

t1,4,6{3,3,3,3,3,3,3,3}
Bipentiruncinated 9-simplex

226800 25200
54

t2,4,6{3,3,3,3,3,3,3,3}
Tristericantellated 9-simplex

201600 25200
55

t0,5,6{3,3,3,3,3,3,3,3}
Hexipentellated 9-simplex

32760 5040
56

t1,5,6{3,3,3,3,3,3,3,3}
Bipentistericated 9-simplex

94500 12600
57

t0,1,7{3,3,3,3,3,3,3,3}
Heptitruncated 9-simplex

23940 2520
58

t0,2,7{3,3,3,3,3,3,3,3}
Hepticantellated 9-simplex

83160 7560
59

t1,2,7{3,3,3,3,3,3,3,3}
Bihexitruncated 9-simplex

64260 7560
60

t0,3,7{3,3,3,3,3,3,3,3}
Heptiruncinated 9-simplex

144900 12600
61

t1,3,7{3,3,3,3,3,3,3,3}
Bihexicantellated 9-simplex

189000 18900
62

t0,4,7{3,3,3,3,3,3,3,3}
Heptistericated 9-simplex

138600 12600
63

t1,4,7{3,3,3,3,3,3,3,3}
Bihexiruncinated 9-simplex

264600 25200
64

t0,5,7{3,3,3,3,3,3,3,3}
Heptipentellated 9-simplex

71820 7560
65

t0,6,7{3,3,3,3,3,3,3,3}
Heptihexicated 9-simplex

17640 2520
66

t0,1,8{3,3,3,3,3,3,3,3}
Octitruncated 9-simplex

5400 720
67

t0,2,8{3,3,3,3,3,3,3,3}
Octicantellated 9-simplex

25200 2520
68

t0,3,8{3,3,3,3,3,3,3,3}
Octiruncinated 9-simplex

57960 5040
69

t0,4,8{3,3,3,3,3,3,3,3}
Octistericated 9-simplex

75600 6300
70

t0,1,2,3{3,3,3,3,3,3,3,3}
Runcicantitruncated 9-simplex

22680 5040
71

t0,1,2,4{3,3,3,3,3,3,3,3}
Stericantitruncated 9-simplex

105840 15120
72

t0,1,3,4{3,3,3,3,3,3,3,3}
Steriruncitruncated 9-simplex

75600 15120
73

t0,2,3,4{3,3,3,3,3,3,3,3}
Steriruncicantellated 9-simplex

75600 15120
74

t1,2,3,4{3,3,3,3,3,3,3,3}
Biruncicantitruncated 9-simplex

68040 15120
75

t0,1,2,5{3,3,3,3,3,3,3,3}
Penticantitruncated 9-simplex

214200 25200
76

t0,1,3,5{3,3,3,3,3,3,3,3}
Pentiruncitruncated 9-simplex

283500 37800
77

t0,2,3,5{3,3,3,3,3,3,3,3}
Pentiruncicantellated 9-simplex

264600 37800
78

t1,2,3,5{3,3,3,3,3,3,3,3}
Bistericantitruncated 9-simplex

245700 37800
79

t0,1,4,5{3,3,3,3,3,3,3,3}
Pentisteritruncated 9-simplex

138600 25200
80

t0,2,4,5{3,3,3,3,3,3,3,3}
Pentistericantellated 9-simplex

226800 37800
81

t1,2,4,5{3,3,3,3,3,3,3,3}
Bisteriruncitruncated 9-simplex

189000 37800
82

t0,3,4,5{3,3,3,3,3,3,3,3}
Pentisteriruncinated 9-simplex

138600 25200
83

t1,3,4,5{3,3,3,3,3,3,3,3}
Bisteriruncicantellated 9-simplex

207900 37800
84

t2,3,4,5{3,3,3,3,3,3,3,3}
Triruncicantitruncated 9-simplex

113400 25200
85

t0,1,2,6{3,3,3,3,3,3,3,3}
Hexicantitruncated 9-simplex

226800 25200
86

t0,1,3,6{3,3,3,3,3,3,3,3}
Hexiruncitruncated 9-simplex

453600 50400
87

t0,2,3,6{3,3,3,3,3,3,3,3}
Hexiruncicantellated 9-simplex

403200 50400
88

t1,2,3,6{3,3,3,3,3,3,3,3}
Bipenticantitruncated 9-simplex

378000 50400
89

t0,1,4,6{3,3,3,3,3,3,3,3}
Hexisteritruncated 9-simplex

403200 50400
90

t0,2,4,6{3,3,3,3,3,3,3,3}
Hexistericantellated 9-simplex

604800 75600
91

t1,2,4,6{3,3,3,3,3,3,3,3}
Bipentiruncitruncated 9-simplex

529200 75600
92

t0,3,4,6{3,3,3,3,3,3,3,3}
Hexisteriruncinated 9-simplex

352800 50400
93

t1,3,4,6{3,3,3,3,3,3,3,3}
Bipentiruncicantellated 9-simplex

529200 75600
94

t2,3,4,6{3,3,3,3,3,3,3,3}
Tristericantitruncated 9-simplex

302400 50400
95

t0,1,5,6{3,3,3,3,3,3,3,3}
Hexipentitruncated 9-simplex

151200 25200
96

t0,2,5,6{3,3,3,3,3,3,3,3}
Hexipenticantellated 9-simplex

352800 50400
97

t1,2,5,6{3,3,3,3,3,3,3,3}
Bipentisteritruncated 9-simplex

277200 50400
98

t0,3,5,6{3,3,3,3,3,3,3,3}
Hexipentiruncinated 9-simplex

352800 50400
99

t1,3,5,6{3,3,3,3,3,3,3,3}
Bipentistericantellated 9-simplex

491400 75600
100

t2,3,5,6{3,3,3,3,3,3,3,3}
Tristeriruncitruncated 9-simplex

252000 50400
101

t0,4,5,6{3,3,3,3,3,3,3,3}
Hexipentistericated 9-simplex

151200 25200
102

t1,4,5,6{3,3,3,3,3,3,3,3}
Bipentisteriruncinated 9-simplex

327600 50400
103

t0,1,2,7{3,3,3,3,3,3,3,3}
Hepticantitruncated 9-simplex

128520 15120
104

t0,1,3,7{3,3,3,3,3,3,3,3}
Heptiruncitruncated 9-simplex

359100 37800
105

t0,2,3,7{3,3,3,3,3,3,3,3}
Heptiruncicantellated 9-simplex

302400 37800
106

t1,2,3,7{3,3,3,3,3,3,3,3}
Bihexicantitruncated 9-simplex

283500 37800
107

t0,1,4,7{3,3,3,3,3,3,3,3}
Heptisteritruncated 9-simplex

478800 50400
108

t0,2,4,7{3,3,3,3,3,3,3,3}
Heptistericantellated 9-simplex

680400 75600
109

t1,2,4,7{3,3,3,3,3,3,3,3}
Bihexiruncitruncated 9-simplex

604800 75600
110

t0,3,4,7{3,3,3,3,3,3,3,3}
Heptisteriruncinated 9-simplex

378000 50400
111

t1,3,4,7{3,3,3,3,3,3,3,3}
Bihexiruncicantellated 9-simplex

567000 75600
112

t0,1,5,7{3,3,3,3,3,3,3,3}
Heptipentitruncated 9-simplex

321300 37800
113

t0,2,5,7{3,3,3,3,3,3,3,3}
Heptipenticantellated 9-simplex

680400 75600
114

t1,2,5,7{3,3,3,3,3,3,3,3}
Bihexisteritruncated 9-simplex

567000 75600
115

t0,3,5,7{3,3,3,3,3,3,3,3}
Heptipentiruncinated 9-simplex

642600 75600
116

t1,3,5,7{3,3,3,3,3,3,3,3}
Bihexistericantellated 9-simplex

907200 113400
117

t0,4,5,7{3,3,3,3,3,3,3,3}
Heptipentistericated 9-simplex

264600 37800
118

t0,1,6,7{3,3,3,3,3,3,3,3}
Heptihexitruncated 9-simplex

98280 15120
119

t0,2,6,7{3,3,3,3,3,3,3,3}
Heptihexicantellated 9-simplex

302400 37800
120

t1,2,6,7{3,3,3,3,3,3,3,3}
Bihexipentitruncated 9-simplex

226800 37800
121

t0,3,6,7{3,3,3,3,3,3,3,3}
Heptihexiruncinated 9-simplex

428400 50400
122

t0,4,6,7{3,3,3,3,3,3,3,3}
Heptihexistericated 9-simplex

302400 37800
123

t0,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentellated 9-simplex

98280 15120
124

t0,1,2,8{3,3,3,3,3,3,3,3}
Octicantitruncated 9-simplex

35280 5040
125

t0,1,3,8{3,3,3,3,3,3,3,3}
Octiruncitruncated 9-simplex

136080 15120
126

t0,2,3,8{3,3,3,3,3,3,3,3}
Octiruncicantellated 9-simplex

105840 15120
127

t0,1,4,8{3,3,3,3,3,3,3,3}
Octisteritruncated 9-simplex

252000 25200
128

t0,2,4,8{3,3,3,3,3,3,3,3}
Octistericantellated 9-simplex

340200 37800
129

t0,3,4,8{3,3,3,3,3,3,3,3}
Octisteriruncinated 9-simplex

176400 25200
130

t0,1,5,8{3,3,3,3,3,3,3,3}
Octipentitruncated 9-simplex

252000 25200
131

t0,2,5,8{3,3,3,3,3,3,3,3}
Octipenticantellated 9-simplex

504000 50400
132

t0,3,5,8{3,3,3,3,3,3,3,3}
Octipentiruncinated 9-simplex

453600 50400
133

t0,1,6,8{3,3,3,3,3,3,3,3}
Octihexitruncated 9-simplex

136080 15120
134

t0,2,6,8{3,3,3,3,3,3,3,3}
Octihexicantellated 9-simplex

378000 37800
135

t0,1,7,8{3,3,3,3,3,3,3,3}
Octiheptitruncated 9-simplex

35280 5040
136

t0,1,2,3,4{3,3,3,3,3,3,3,3}
Steriruncicantitruncated 9-simplex

136080 30240
137

t0,1,2,3,5{3,3,3,3,3,3,3,3}
Pentiruncicantitruncated 9-simplex

491400 75600
138

t0,1,2,4,5{3,3,3,3,3,3,3,3}
Pentistericantitruncated 9-simplex

378000 75600
139

t0,1,3,4,5{3,3,3,3,3,3,3,3}
Pentisteriruncitruncated 9-simplex

378000 75600
140

t0,2,3,4,5{3,3,3,3,3,3,3,3}
Pentisteriruncicantellated 9-simplex

378000 75600
141

t1,2,3,4,5{3,3,3,3,3,3,3,3}
Bisteriruncicantitruncated 9-simplex

340200 75600
142

t0,1,2,3,6{3,3,3,3,3,3,3,3}
Hexiruncicantitruncated 9-simplex

756000 100800
143

t0,1,2,4,6{3,3,3,3,3,3,3,3}
Hexistericantitruncated 9-simplex

1058400 151200
144

t0,1,3,4,6{3,3,3,3,3,3,3,3}
Hexisteriruncitruncated 9-simplex

982800 151200
145

t0,2,3,4,6{3,3,3,3,3,3,3,3}
Hexisteriruncicantellated 9-simplex

982800 151200
146

t1,2,3,4,6{3,3,3,3,3,3,3,3}
Bipentiruncicantitruncated 9-simplex

907200 151200
147

t0,1,2,5,6{3,3,3,3,3,3,3,3}
Hexipenticantitruncated 9-simplex

554400 100800
148

t0,1,3,5,6{3,3,3,3,3,3,3,3}
Hexipentiruncitruncated 9-simplex

907200 151200
149

t0,2,3,5,6{3,3,3,3,3,3,3,3}
Hexipentiruncicantellated 9-simplex

831600 151200
150

t1,2,3,5,6{3,3,3,3,3,3,3,3}
Bipentistericantitruncated 9-simplex

756000 151200
151

t0,1,4,5,6{3,3,3,3,3,3,3,3}
Hexipentisteritruncated 9-simplex

554400 100800
152

t0,2,4,5,6{3,3,3,3,3,3,3,3}
Hexipentistericantellated 9-simplex

907200 151200
153

t1,2,4,5,6{3,3,3,3,3,3,3,3}
Bipentisteriruncitruncated 9-simplex

756000 151200
154

t0,3,4,5,6{3,3,3,3,3,3,3,3}
Hexipentisteriruncinated 9-simplex

554400 100800
155

t1,3,4,5,6{3,3,3,3,3,3,3,3}
Bipentisteriruncicantellated 9-simplex

831600 151200
156

t2,3,4,5,6{3,3,3,3,3,3,3,3}
Tristeriruncicantitruncated 9-simplex

453600 100800
157

t0,1,2,3,7{3,3,3,3,3,3,3,3}
Heptiruncicantitruncated 9-simplex

567000 75600
158

t0,1,2,4,7{3,3,3,3,3,3,3,3}
Heptistericantitruncated 9-simplex

1209600 151200
159

t0,1,3,4,7{3,3,3,3,3,3,3,3}
Heptisteriruncitruncated 9-simplex

1058400 151200
160

t0,2,3,4,7{3,3,3,3,3,3,3,3}
Heptisteriruncicantellated 9-simplex

1058400 151200
161

t1,2,3,4,7{3,3,3,3,3,3,3,3}
Bihexiruncicantitruncated 9-simplex

982800 151200
162

t0,1,2,5,7{3,3,3,3,3,3,3,3}
Heptipenticantitruncated 9-simplex

1134000 151200
163

t0,1,3,5,7{3,3,3,3,3,3,3,3}
Heptipentiruncitruncated 9-simplex

1701000 226800
164

t0,2,3,5,7{3,3,3,3,3,3,3,3}
Heptipentiruncicantellated 9-simplex

1587600 226800
165

t1,2,3,5,7{3,3,3,3,3,3,3,3}
Bihexistericantitruncated 9-simplex

1474200 226800
166

t0,1,4,5,7{3,3,3,3,3,3,3,3}
Heptipentisteritruncated 9-simplex

982800 151200
167

t0,2,4,5,7{3,3,3,3,3,3,3,3}
Heptipentistericantellated 9-simplex

1587600 226800
168

t1,2,4,5,7{3,3,3,3,3,3,3,3}
Bihexisteriruncitruncated 9-simplex

1360800 226800
169

t0,3,4,5,7{3,3,3,3,3,3,3,3}
Heptipentisteriruncinated 9-simplex

982800 151200
170

t1,3,4,5,7{3,3,3,3,3,3,3,3}
Bihexisteriruncicantellated 9-simplex

1474200 226800
171

t0,1,2,6,7{3,3,3,3,3,3,3,3}
Heptihexicantitruncated 9-simplex

453600 75600
172

t0,1,3,6,7{3,3,3,3,3,3,3,3}
Heptihexiruncitruncated 9-simplex

1058400 151200
173

t0,2,3,6,7{3,3,3,3,3,3,3,3}
Heptihexiruncicantellated 9-simplex

907200 151200
174

t1,2,3,6,7{3,3,3,3,3,3,3,3}
Bihexipenticantitruncated 9-simplex

831600 151200
175

t0,1,4,6,7{3,3,3,3,3,3,3,3}
Heptihexisteritruncated 9-simplex

1058400 151200
176

t0,2,4,6,7{3,3,3,3,3,3,3,3}
Heptihexistericantellated 9-simplex

1587600 226800
177

t1,2,4,6,7{3,3,3,3,3,3,3,3}
Bihexipentiruncitruncated 9-simplex

1360800 226800
178

t0,3,4,6,7{3,3,3,3,3,3,3,3}
Heptihexisteriruncinated 9-simplex

907200 151200
179

t0,1,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentitruncated 9-simplex

453600 75600
180

t0,2,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipenticantellated 9-simplex

1058400 151200
181

t0,3,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentiruncinated 9-simplex

1058400 151200
182

t0,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentistericated 9-simplex

453600 75600
183

t0,1,2,3,8{3,3,3,3,3,3,3,3}
Octiruncicantitruncated 9-simplex

196560 30240
184

t0,1,2,4,8{3,3,3,3,3,3,3,3}
Octistericantitruncated 9-simplex

604800 75600
185

t0,1,3,4,8{3,3,3,3,3,3,3,3}
Octisteriruncitruncated 9-simplex

491400 75600
186

t0,2,3,4,8{3,3,3,3,3,3,3,3}
Octisteriruncicantellated 9-simplex

491400 75600
187

t0,1,2,5,8{3,3,3,3,3,3,3,3}
Octipenticantitruncated 9-simplex

856800 100800
188

t0,1,3,5,8{3,3,3,3,3,3,3,3}
Octipentiruncitruncated 9-simplex

1209600 151200
189

t0,2,3,5,8{3,3,3,3,3,3,3,3}
Octipentiruncicantellated 9-simplex

1134000 151200
190

t0,1,4,5,8{3,3,3,3,3,3,3,3}
Octipentisteritruncated 9-simplex

655200 100800
191

t0,2,4,5,8{3,3,3,3,3,3,3,3}
Octipentistericantellated 9-simplex

1058400 151200
192

t0,3,4,5,8{3,3,3,3,3,3,3,3}
Octipentisteriruncinated 9-simplex

655200 100800
193

t0,1,2,6,8{3,3,3,3,3,3,3,3}
Octihexicantitruncated 9-simplex

604800 75600
194

t0,1,3,6,8{3,3,3,3,3,3,3,3}
Octihexiruncitruncated 9-simplex

1285200 151200
195

t0,2,3,6,8{3,3,3,3,3,3,3,3}
Octihexiruncicantellated 9-simplex

1134000 151200
196

t0,1,4,6,8{3,3,3,3,3,3,3,3}
Octihexisteritruncated 9-simplex

1209600 151200
197

t0,2,4,6,8{3,3,3,3,3,3,3,3}
Octihexistericantellated 9-simplex

1814400 226800
198

t0,1,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentitruncated 9-simplex

491400 75600
199

t0,1,2,7,8{3,3,3,3,3,3,3,3}
Octihepticantitruncated 9-simplex

196560 30240
200

t0,1,3,7,8{3,3,3,3,3,3,3,3}
Octiheptiruncitruncated 9-simplex

604800 75600
201

t0,1,4,7,8{3,3,3,3,3,3,3,3}
Octiheptisteritruncated 9-simplex

856800 100800
202

t0,1,2,3,4,5{3,3,3,3,3,3,3,3}
Pentisteriruncicantitruncated 9-simplex

680400 151200
203

t0,1,2,3,4,6{3,3,3,3,3,3,3,3}
Hexisteriruncicantitruncated 9-simplex

1814400 302400
204

t0,1,2,3,5,6{3,3,3,3,3,3,3,3}
Hexipentiruncicantitruncated 9-simplex

1512000 302400
205

t0,1,2,4,5,6{3,3,3,3,3,3,3,3}
Hexipentistericantitruncated 9-simplex

1512000 302400
206

t0,1,3,4,5,6{3,3,3,3,3,3,3,3}
Hexipentisteriruncitruncated 9-simplex

1512000 302400
207

t0,2,3,4,5,6{3,3,3,3,3,3,3,3}
Hexipentisteriruncicantellated 9-simplex

1512000 302400
208

t1,2,3,4,5,6{3,3,3,3,3,3,3,3}
Bipentisteriruncicantitruncated 9-simplex

1360800 302400
209

t0,1,2,3,4,7{3,3,3,3,3,3,3,3}
Heptisteriruncicantitruncated 9-simplex

1965600 302400
210

t0,1,2,3,5,7{3,3,3,3,3,3,3,3}
Heptipentiruncicantitruncated 9-simplex

2948400 453600
211

t0,1,2,4,5,7{3,3,3,3,3,3,3,3}
Heptipentistericantitruncated 9-simplex

2721600 453600
212

t0,1,3,4,5,7{3,3,3,3,3,3,3,3}
Heptipentisteriruncitruncated 9-simplex

2721600 453600
213

t0,2,3,4,5,7{3,3,3,3,3,3,3,3}
Heptipentisteriruncicantellated 9-simplex

2721600 453600
214

t1,2,3,4,5,7{3,3,3,3,3,3,3,3}
Bihexisteriruncicantitruncated 9-simplex

2494800 453600
215

t0,1,2,3,6,7{3,3,3,3,3,3,3,3}
Heptihexiruncicantitruncated 9-simplex

1663200 302400
216

t0,1,2,4,6,7{3,3,3,3,3,3,3,3}
Heptihexistericantitruncated 9-simplex

2721600 453600
217

t0,1,3,4,6,7{3,3,3,3,3,3,3,3}
Heptihexisteriruncitruncated 9-simplex

2494800 453600
218

t0,2,3,4,6,7{3,3,3,3,3,3,3,3}
Heptihexisteriruncicantellated 9-simplex

2494800 453600
219

t1,2,3,4,6,7{3,3,3,3,3,3,3,3}
Bihexipentiruncicantitruncated 9-simplex

2268000 453600
220

t0,1,2,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipenticantitruncated 9-simplex

1663200 302400
221

t0,1,3,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentiruncitruncated 9-simplex

2721600 453600
222

t0,2,3,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentiruncicantellated 9-simplex

2494800 453600
223

t1,2,3,5,6,7{3,3,3,3,3,3,3,3}
Bihexipentistericantitruncated 9-simplex

2268000 453600
224

t0,1,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentisteritruncated 9-simplex

1663200 302400
225

t0,2,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentistericantellated 9-simplex

2721600 453600
226

t0,3,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentisteriruncinated 9-simplex

1663200 302400
227

t0,1,2,3,4,8{3,3,3,3,3,3,3,3}
Octisteriruncicantitruncated 9-simplex

907200 151200
228

t0,1,2,3,5,8{3,3,3,3,3,3,3,3}
Octipentiruncicantitruncated 9-simplex

2116800 302400
229

t0,1,2,4,5,8{3,3,3,3,3,3,3,3}
Octipentistericantitruncated 9-simplex

1814400 302400
230

t0,1,3,4,5,8{3,3,3,3,3,3,3,3}
Octipentisteriruncitruncated 9-simplex

1814400 302400
231

t0,2,3,4,5,8{3,3,3,3,3,3,3,3}
Octipentisteriruncicantellated 9-simplex

1814400 302400
232

t0,1,2,3,6,8{3,3,3,3,3,3,3,3}
Octihexiruncicantitruncated 9-simplex

2116800 302400
233

t0,1,2,4,6,8{3,3,3,3,3,3,3,3}
Octihexistericantitruncated 9-simplex

3175200 453600
234

t0,1,3,4,6,8{3,3,3,3,3,3,3,3}
Octihexisteriruncitruncated 9-simplex

2948400 453600
235

t0,2,3,4,6,8{3,3,3,3,3,3,3,3}
Octihexisteriruncicantellated 9-simplex

2948400 453600
236

t0,1,2,5,6,8{3,3,3,3,3,3,3,3}
Octihexipenticantitruncated 9-simplex

1814400 302400
237

t0,1,3,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentiruncitruncated 9-simplex

2948400 453600
238

t0,2,3,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentiruncicantellated 9-simplex

2721600 453600
239

t0,1,4,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentisteritruncated 9-simplex

1814400 302400
240

t0,1,2,3,7,8{3,3,3,3,3,3,3,3}
Octiheptiruncicantitruncated 9-simplex

907200 151200
241

t0,1,2,4,7,8{3,3,3,3,3,3,3,3}
Octiheptistericantitruncated 9-simplex

2116800 302400
242

t0,1,3,4,7,8{3,3,3,3,3,3,3,3}
Octiheptisteriruncitruncated 9-simplex

1814400 302400
243

t0,1,2,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipenticantitruncated 9-simplex

2116800 302400
244

t0,1,3,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipentiruncitruncated 9-simplex

3175200 453600
245

t0,1,2,6,7,8{3,3,3,3,3,3,3,3}
Octiheptihexicantitruncated 9-simplex

907200 151200
246

t0,1,2,3,4,5,6{3,3,3,3,3,3,3,3}
Hexipentisteriruncicantitruncated 9-simplex

2721600 604800
247

t0,1,2,3,4,5,7{3,3,3,3,3,3,3,3}
Heptipentisteriruncicantitruncated 9-simplex

4989600 907200
248

t0,1,2,3,4,6,7{3,3,3,3,3,3,3,3}
Heptihexisteriruncicantitruncated 9-simplex

4536000 907200
249

t0,1,2,3,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentiruncicantitruncated 9-simplex

4536000 907200
250

t0,1,2,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentistericantitruncated 9-simplex

4536000 907200
251

t0,1,3,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentisteriruncitruncated 9-simplex

4536000 907200
252

t0,2,3,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentisteriruncicantellated 9-simplex

4536000 907200
253

t1,2,3,4,5,6,7{3,3,3,3,3,3,3,3}
Bihexipentisteriruncicantitruncated 9-simplex

4082400 907200
254

t0,1,2,3,4,5,8{3,3,3,3,3,3,3,3}
Octipentisteriruncicantitruncated 9-simplex

3326400 604800
255

t0,1,2,3,4,6,8{3,3,3,3,3,3,3,3}
Octihexisteriruncicantitruncated 9-simplex

5443200 907200
256

t0,1,2,3,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentiruncicantitruncated 9-simplex

4989600 907200
257

t0,1,2,4,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentistericantitruncated 9-simplex

4989600 907200
258

t0,1,3,4,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentisteriruncitruncated 9-simplex

4989600 907200
259

t0,2,3,4,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentisteriruncicantellated 9-simplex

4989600 907200
260

t0,1,2,3,4,7,8{3,3,3,3,3,3,3,3}
Octiheptisteriruncicantitruncated 9-simplex

3326400 604800
261

t0,1,2,3,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipentiruncicantitruncated 9-simplex

5443200 907200
262

t0,1,2,4,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipentistericantitruncated 9-simplex

4989600 907200
263

t0,1,3,4,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipentisteriruncitruncated 9-simplex

4989600 907200
264

t0,1,2,3,6,7,8{3,3,3,3,3,3,3,3}
Octiheptihexiruncicantitruncated 9-simplex

3326400 604800
265

t0,1,2,4,6,7,8{3,3,3,3,3,3,3,3}
Octiheptihexistericantitruncated 9-simplex

5443200 907200
266

t0,1,2,3,4,5,6,7{3,3,3,3,3,3,3,3}
Heptihexipentisteriruncicantitruncated 9-simplex

8164800 1814400
267

t0,1,2,3,4,5,6,8{3,3,3,3,3,3,3,3}
Octihexipentisteriruncicantitruncated 9-simplex

9072000 1814400
268

t0,1,2,3,4,5,7,8{3,3,3,3,3,3,3,3}
Octiheptipentisteriruncicantitruncated 9-simplex

9072000 1814400
269

t0,1,2,3,4,6,7,8{3,3,3,3,3,3,3,3}
Octiheptihexisteriruncicantitruncated 9-simplex

9072000 1814400
270

t0,1,2,3,5,6,7,8{3,3,3,3,3,3,3,3}
Octiheptihexipentiruncicantitruncated 9-simplex

9072000 1814400
271

t0,1,2,3,4,5,6,7,8{3,3,3,3,3,3,3,3}
Omnitruncated 9-simplex

16329600 3628800

The B9 family

There are 511 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

Eleven cases are shown below: Nine rectified forms and 2 truncations. Bowers-style acronym names are given in parentheses for cross-referencing. Bowers-style acronym names are given in parentheses for cross-referencing.

# Graph Coxeter-Dynkin diagram
Schläfli symbol
Name
Element counts
8-faces 7-faces 6-faces 5-faces 4-faces Cells Faces Edges Vertices
1
t0{4,3,3,3,3,3,3,3}
9-cube (enne)
18 144 672 2016 4032 5376 4608 2304 512
2
t0,1{4,3,3,3,3,3,3,3}
Truncated 9-cube (ten)
2304 4608
3
t1{4,3,3,3,3,3,3,3}
Rectified 9-cube (ren)
18432 2304
4
t2{4,3,3,3,3,3,3,3}
Birectified 9-cube (barn)
64512 4608
5
t3{4,3,3,3,3,3,3,3}
Trirectified 9-cube (tarn)
96768 5376
6
t4{4,3,3,3,3,3,3,3}
Quadrirectified 9-cube (nav)
(Quadrirectified 9-orthoplex)
80640 4032
7
t3{3,3,3,3,3,3,3,4}
Trirectified 9-orthoplex (tarv)
40320 2016
8
t2{3,3,3,3,3,3,3,4}
Birectified 9-orthoplex (brav)
12096 672
9
t1{3,3,3,3,3,3,3,4}
Rectified 9-orthoplex (riv)
2016 144
10
t0,1{3,3,3,3,3,3,3,4}
Truncated 9-orthoplex (tiv)
2160 288
11
t0{3,3,3,3,3,3,3,4}
9-orthoplex (vee)
512 2304 4608 5376 4032 2016 672 144 18

The D9 family

The D9 family has symmetry of order 92,897,280 (9 factorial × 28).

This family has 3×128−1=383 Wythoffian uniform polytopes, generated by marking one or more nodes of the D9 Coxeter-Dynkin diagram. Of these, 255 (2×128−1) are repeated from the B9 family and 128 are unique to this family, with the eight 1 or 2 ringed forms listed below. Bowers-style acronym names are given in parentheses for cross-referencing.

# Coxeter plane graphs Coxeter-Dynkin diagram
Schläfli symbol
Base point
(Alternately signed)
Element counts Circumrad
B9 D9 D8 D7 D6 D5 D4 D3 A7 A5 A3 8 7 6 5 4 3 2 1 0
1
9-demicube (henne)
(1,1,1,1,1,1,1,1,1) 274 2448 9888 23520 36288 37632 21404 4608 256 1.0606601
2
Truncated 9-demicube (thenne)
(1,1,3,3,3,3,3,3,3) 69120 9216 2.8504384
3
Cantellated 9-demicube
(1,1,1,3,3,3,3,3,3) 225792 21504 2.6692696
4
Runcinated 9-demicube
(1,1,1,1,3,3,3,3,3) 419328 32256 2.4748735
5
Stericated 9-demicube
(1,1,1,1,1,3,3,3,3) 483840 32256 2.2638462
6
Pentellated 9-demicube
(1,1,1,1,1,1,3,3,3) 354816 21504 2.0310094
7
Hexicated 9-demicube
(1,1,1,1,1,1,1,3,3) 161280 9216 1.7677668
8
Heptellated 9-demicube
(1,1,1,1,1,1,1,1,3) 41472 2304 1.4577379

Regular and uniform honeycombs

There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 8-space:

# Coxeter group Coxeter-Dynkin diagram
1 {\tilde{A}}_8 [3[8]]
2 {\tilde{B}}_8 h[4,36,4]
[4,35,31,1]
3 {\tilde{C}}_8 [4,36,4]
4 {\tilde{D}}_8 q[4,36,4]
[31,1,34,31,1]
5 {\tilde{E}}_8 [35,2,1]

Regular and uniform tessellations include:

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 9, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However there are 4 noncompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 8-space as permutations of rings of the Coxeter diagrams.

{\bar{P}}_8 = [3,3[8]]:
{\bar{Q}}_8 = [31,1,33,32,1]:
{\bar{S}}_8 = [4,34,32,1]:
{\bar{T}}_8 = [34,3,1]:

References

External links